PEMETAAN CEPAT GENANGAN BANJIR MENGGUNAKAN TEKNOLOGI REMOTE SENSING

Authors

DOI:

https://doi.org/10.21776/ub.rekayasasipil.2022.016.02.9

Keywords:

rapid mapping, sentinel 2-L1C, NDWI, MNDWI, threshold

Abstract

The existence of a flood inundation rapid map is needed in flood mitigation. This research is intended to map flood inundation quickly by utilizing satellite image technology. Sentinel 2 Level 1C technology uses before and after the flood. The extraction process uses the methods of NDWI (Normalized Difference Water Index) and MNDWI (Modified Normalized Difference Water Index). The result is treated with a threshold value by dividing the pixel value into flooded and unflooded areas. The performance model shows that the MNDWI method is more accurate than the NDWI method in producing flood inundation maps. Thus, the results of the MNDWI method are practical and able to map flood inundation quickly. 

References

S. Mahmood, A. Sajjad, and A. ur Rahman, “Cause and damage analysis of 2010 flood disaster in district Muzaffar Garh, Pakistan,†Nat. Hazards, vol. 107, no. 2, pp. 1681–1692, 2021, doi: 10.1007/s11069-021-04652-6.

M. Huang and S. Jin, “Rapid flood mapping and evaluation with a supervised classifier and change detection in Shouguang using Sentinel-1 SAR and Sentinel-2 optical data,†Remote Sens., vol. 12, no. 13, 2020, doi: 10.3390/rs12132073.

M. GaÅ¡paroviÄ and D. KlobuÄar, “Mapping floods in lowland forest using sentinel-1 and sentinel-2 data and an object-based approach,†Forests, vol. 12, no. 5, 2021, doi: 10.3390/f12050553.

BPBD Kab.Jember, “Infografis Bencana Banjir.†BPBD Kab. Jember, Jember, 2021, [Online]. Available: https://www.instagram.com/p/CLcEtgBA6Ew/.

R. Sivanpillai, K. M. Jacobs, C. M. Mattilio, and E. V. Piskorski, “Rapid flood inundation mapping by differencing water indices from pre- and post-flood Landsat images,†Front. Earth Sci., vol. 15, no. 1, pp. 1–11, 2021, doi: 10.1007/s11707-020-0818-0.

M. Ferk, R. CigliÄ, B. Komac, and D. Lóczy, “Management of small retention ponds and their impact on flood hazard prevention in the Slovenske Gorice Hills,†Acta Geogr. Slov., vol. 61, no. 1, pp. 141–152, 2021, doi: https://doi.org/10.3986/AGS.7675.

G. Sarp and M. Ozcelik, “Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey,†J. Taibah Univ. Sci., vol. 11, no. 3, pp. 381–391, 2017, doi: 10.1016/j.jtusci.2016.04.005.

W. Chen et al., “Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling,†Bull. Eng. Geol. Environ., vol. 78, no. 6, pp. 4397–4419, 2019, doi: 10.1007/s10064-018-1401-8.

G. L. Feyisa, H. Meilby, R. Fensholt, and S. R. Proud, “Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery,†Remote Sens. Environ., vol. 140, pp. 23–35, 2014, doi: 10.1016/j.rse.2013.08.029.

A. Fisher, N. Flood, and T. Danaher, “Comparing Landsat water index methods for automated water classification in eastern Australia,†Remote Sens. Environ., vol. 175, pp. 167–182, 2016, doi: 10.1016/j.rse.2015.12.055.

Y. Dong, B. Forster, and C. Ticehurst, “Radar backscatter analysis for urban environments,†Int. J. Remote Sens., vol. 18, no. 6, pp. 1351–1364, 1997, doi: 10.1080/014311697218467.

Badan Pusat Statistik Kab. Jember, “Kabupaten Jember Dalam Angka,†Kabupaten Jember Dalam Angka, pp. 1–68, 2021.

W. Chen et al., “Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China,†Sci. Total Environ., vol. 626, pp. 1121–1135, 2018, doi: 10.1016/j.scitotenv.2018.01.124.

B. C. Gao, “NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space,†Remote Sens. Environ., vol. 58, no. 3, pp. 257–266, 1996, doi: 10.1016/S0034-4257(96)00067-3.

H. Xu, “Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery,†Int. J. Remote Sens., vol. 27, no. 14, pp. 3025–3033, 2006, doi: 10.1080/01431160600589179.

S. K. McFeeters, “The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features,†Int. J. Remote Sens., vol. 17, no. 7, pp. 1425–1432, 1996, doi: 10.1080/01431169608948714.

M. Sathianarayanan, “Assessment of surface water dynamics using multiple water indices around Adama woreda, Ethiopia,†ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 4, no. 5, pp. 181–188, 2018, doi: 10.5194/isprs-annals-IV-5-181-2018.

S. Wahyuni, “Identifikasi Karakteristik dan Pemetaan Tutupan Lahan Menggunakan Citra Landsat 8 (OLI) Di Kabupaten Ogan Komering Ilir Provinsi Sumatera Selatan,†SKRIPSIDepartemen Manaj. Hutan Fak. Kehutan. Inst. Pertan. Bogor, vol. 3, pp. 103–111, 2015.

LAPAN, “Pedoman Pengolahan Data Satelit Multispektral Secara Digital Supervised Untuk Klasifikasi,†pp. 1–8, 2015, [Online]. Available: http://pusfatja.lapan.go.id/files_uploads_ebook/pedoman/000_Buku_Pedoman_Klasifikasi_final.pdf.

B. Mentari, “Identifikasi karakteristik dan pemetaan klasifikasi tutupan lahan menggunakan citra landsat 8 (oli) di kabupaten bogor bunga mentari,†SKRIPSI, pp. 1–20, 2013.

P. F. Watson and A. Petrie, “Method agreement analysis: A review of correct methodology,†Theriogenology, vol. 73, no. 9, pp. 1167–1179, 2010, doi: 10.1016/j.theriogenology.2010.01.003.

Downloads

Published

2022-06-30